z-logo
Premium
Extension of plasticity theory to debonding, grain dissolution, and chemical damage of calcarenites
Author(s) -
Ciantia Matteo O.,
Prisco Claudio
Publication year - 2015
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2397
Subject(s) - dissolution , plasticity , materials science , constitutive equation , diagenesis , hardening (computing) , stiffness , geotechnical engineering , composite material , geology , structural engineering , mineralogy , chemistry , engineering , finite element method , layer (electronics)
Summary The mechanical properties of calcarenites are known to be significantly affected by water saturation: both stiffness and strength decrease for wetting in the short term and for chemical dissolution in the long term. Both processes mainly affect bonds among grains: immediately after inundation depositional bonds fall in suspension, whereas diagenetic bonds dissolve more slowly. In this paper, the authors started from the micro‐structural analysis of the weathering processes to conceive a strain hardening hydro‐chemo‐mechanical coupled elastoplastic constitutive model. The concept of extended hardening rules is here enriched: weathering functions have been determined by employing a micro to macro simplified upscaling procedure. Chemical damage is incorporated into the formulation by means of a scalar damage function. Its evolution is also described by using a multiscale approach. A new term is added to the strain rate tensor in order to incorporate the dissolution induced chemical deformations developing once the soft rock is turned into a granular material. A calibration procedure for the constitutive parameters is suggested, and the model is validated by using both coupled and uncoupled chemo‐mechanical experimental test results. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom