Premium
Frictionless contact formulation for dynamic analysis of nonlinear saturated porous media based on the mortar method
Author(s) -
Sabetamal Hassan,
Nazem Majid,
Sloan Scott W.,
Carter John P.
Publication year - 2016
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2386
Subject(s) - finite element method , porous medium , nonlinear system , consolidation (business) , mechanics , inertia , materials science , geotechnical engineering , porosity , engineering , structural engineering , classical mechanics , physics , accounting , quantum mechanics , business
Summary A finite element algorithm for frictionless contact problems in a two‐phase saturated porous medium, considering finite deformation and inertia effects, has been formulated and implemented in a finite element programme. The mechanical behaviour of the saturated porous medium is predicted using mixture theory, which models the dynamic advection of fluids through a fully saturated porous solid matrix. The resulting mixed formulation predicts all field variables including the solid displacement, pore fluid pressure and Darcy velocity of the pore fluid. The contact constraints arising from the requirement for continuity of the contact traction, as well as the fluid flow across the contact interface, are enforced using a penalty approach that is regularised with an augmented Lagrangian method. The contact formulation is based on a mortar segment‐to‐segment scheme that allows the interpolation functions of the contact elements to be of order N . The main thrust of this paper is therefore how to deal with contact interfaces in problems that involve both dynamics and consolidation and possibly large deformations of porous media. The numerical algorithm is first verified using several illustrative examples. This algorithm is then employed to solve a pipe‐seabed interaction problem, involving large deformations and dynamic effects, and the results of the analysis are also compared with those obtained using a node‐to‐segment contact algorithm. The results of this study indicate that the proposed method is able to solve the highly nonlinear problem of dynamic soil–structure interaction when coupled with pore water pressures and Darcy velocity. Copyright © 2015 John Wiley & Sons, Ltd.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom