z-logo
Premium
Semi‐analytical elastostatic analysis of unbounded two‐dimensional domains
Author(s) -
Deeks Andrew J.,
Wolf John P.
Publication year - 2002
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.232
Subject(s) - finite element method , mathematics , displacement (psychology) , mathematical analysis , boundary value problem , plane stress , boundary (topology) , domain (mathematical analysis) , plane (geometry) , matrix (chemical analysis) , truncation (statistics) , infinity , semi infinite , geometry , physics , psychology , statistics , materials science , composite material , psychotherapist , thermodynamics
Unbounded plane stress and plane strain domains subjected to static loading undergo infinite displacements, even when the zero displacement boundary condition at infinity is enforced. However, the stress and strain fields are well behaved, and are of practical interest. This causes significant difficulty when analysis is attempted using displacement‐based numerical methods, such as the finite‐element method. To circumvent this difficulty problems of this nature are often changed subtly before analysis to limit the displacements to finite values. Such a process is unsatisfactory, as it distorts the solution in some way, and may lead to a stiffness matrix that is nearly singular. In this paper, the semi‐analytical scaled boundary finite‐element method is extended to permit the analysis of such problems without requiring any modification of the problem itself. This is possible because the governing differential equations are solved analytically in the radial direction. The displacement solutions so obtained include an infinite component, but relative motion between any two points in the unbounded domain can be computed accurately. No small arbitrary constants are introduced, no arbitrary truncation of the domain is performed, and no ill‐conditioned matrices are inverted. Copyright © 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here