z-logo
Premium
Discrete element method analysis of non‐coaxial flow under rotational shear
Author(s) -
Tong Zhaoxia,
Fu Pengcheng,
Dafalias Yannis F.,
Yao Yangping
Publication year - 2014
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2290
Subject(s) - void ratio , discrete element method , coaxial , mechanics , simple shear , shearing (physics) , shear stress , materials science , shear (geology) , computer simulation , engineering , physics , composite material , mechanical engineering
SUMMARY This study focuses on non‐coaxial flow behavior of cohesionless soil undergoing cyclic rotational shear, with a special interest in the effects of particle‐scale characteristics. To this end, we perform a series of 2D discrete element simulations with various particle shapes, inter‐particle coefficient of friction, initial density, and stress ratios. The validity and efficacy of the numerical model is established by systematically comparing numerical simulation results with existing laboratory testing results. Such comparison shows that the numerical simulations are capable of capturing mechanical behavior observed in laboratory testing under rotational shear. We further demonstrate and quantify a strong yet simple relationship between the deviatoric part of the normalized strain increment and the non‐coaxial angle, denoted byΔ ε q R and ψ , respectively. This quantitative correlation between ψ andΔ ε q R is independent of applied stress ratio, initial and current void ratio, and the number of cycles applied, but dependent on the principal stress orientation and particle‐scale characteristics. At the sameΔ ε q R , specimens with higher inter‐particle friction angle or smaller particle aspect ratio show greater non‐coaxial angles. A simple model ψ = 45 ∘ mΔ ε q Ris able to fit this ψ ‐Δ ε q R relationship well, which provides a useful relationship that can be exploited in developing constitutive models for rotational shearing. Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here