Premium
Theoretical and numerical study of the steady‐state flow through finite fractured porous media
Author(s) -
Vu MinhNgoc,
Pouya Ahmad,
Seyedi Darius M.
Publication year - 2013
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2200
Subject(s) - porous medium , mechanics , finite element method , darcy's law , boundary element method , boundary value problem , laminar flow , mathematics , hagen–poiseuille equation , flow (mathematics) , mathematical analysis , geology , physics , geotechnical engineering , porosity , thermodynamics
SUMMARY This paper investigates the two‐dimensional flow problem through an anisotropic porous medium containing several intersecting curved fractures. First, the governing equations of steady‐state fluid flow in a fractured porous body are summarized. The flow follows Darcy's law in matrix and Poiseuille's law in fractures. An infinite transversal permeability is considered for the fractures. A multi‐region boundary element method is used to derive a general pressure solution as a function of discharge through the fractures and the pressure and the normal flux on the domain boundary. The obtained solution fully accounts for the interaction and the intersection between fractures. A numerical procedure based on collocation method is presented to compute the unknowns on the boundaries and on the fractures. The numerical solution is validated by comparing with finite element solution or the results obtained for an infinite matrix. Pressure fields in the matrix are illustrated for domains containing several interconnected fractures, and mass balance at the intersection points is also checked. Copyright © 2013 John Wiley & Sons, Ltd.