Premium
Modeling of tensile strength of rocks materials based on support vector machines approaches
Author(s) -
Ceryan Nurcihan,
Okkan Umut,
Samui Pijush,
Ceryan Sener
Publication year - 2013
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2154
Subject(s) - support vector machine , artificial neural network , artificial intelligence , machine learning , data mining , ultimate tensile strength , computer science , least squares function approximation , least squares support vector machine , algorithm , engineering , pattern recognition (psychology) , mathematics , statistics , materials science , estimator , metallurgy
SUMMARY In the predicting of geological variables, artificial neural networks (ANNs) have some drawbacks including possibility of getting trapped in local minima, over training, subjectivity in the determining of model parameters and the components of its complex structure. Recently, support vector machines (SVM) has been found to be popular in prediction studies due to its some advantages over ANNs. Because the least squares SVM (LS‐SVM) provides a computational advantage over SVM by converting quadratic optimization problem into a system of linear equations, LS‐SVM method is also tried in study. The main purpose of this study is to examine the capability of these two SVM algorithms for the prediction of tensile strength of rock materials and to compare its performance with ANN and linear regression (MLR) models. Total porosity, sonic velocity, slake durability index and aggregate impact value were used as input in modeling applications. Favorite performance evaluation measures were employed to assess developed models. The results determined in study indicate that the SVM, LS‐SVM and ANN methods are successful tools for prediction of tensile strength variable and can give good prediction performances than MLR model. Although these three methods are powerful artificial intelligence techniques, LS‐SVM makes the running time considerably faster with the higher accuracy. In terms of accuracy, the LS‐SVM model resulted in error reductions relative to that of the other models. Copyright © 2012 John Wiley & Sons, Ltd.