Premium
Deformation analysis of tunnel excavation below existing pipelines in multi‐layered soils based on displacement controlled coupling numerical method
Author(s) -
Zhang Zhiguo,
Huang Maosong,
Zhang Mengxi
Publication year - 2012
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2098
Subject(s) - displacement (psychology) , geotechnical engineering , soil water , finite element method , pipeline transport , coupling (piping) , excavation , numerical analysis , boundary element method , quantum tunnelling , boundary value problem , engineering , geology , structural engineering , mathematics , materials science , mathematical analysis , mechanical engineering , soil science , optoelectronics , psychology , psychotherapist
SUMMARY The effect of tunneling on surrounding environments, especially on existing buried pipelines is a problem that engineers designing and practicing in urban geotechnical environments encounter more frequently than in the past. However, previous studies are usually based on the assumption that the soil is homogeneous. How to reflect soil stratification is the main focus for the problem of tunneling in multi‐layered soils. A displacement controlled coupling numerical method is presented for the displacement analysis of tunnel excavation below existing pipelines in multi‐layered soils. On the basis of the layered soil model, to consider the soil nonhomogeneous characteristic, the finite element method and boundary element method are coupled to simulate the deformation of existing pipelines induced by tunneling. The solutions indicate that good agreements are obtained between the proposed coupling numerical method and the commercial software. The accuracy of the proposed numerical method is better than the two stages method based on the existing closed‐form solutions. Moreover, the results discussed in this paper show that the error obtained by the previous method of weighted average on the basis of homogeneous half space converted from layered soils is not negligible for the obvious difference of elastic parameters among successive layers. Copyright © 2012 John Wiley & Sons, Ltd.