Premium
Numerical solution for consolidation and desiccation of soft soils
Author(s) -
Yao Daniel T. C.,
de OliveiraFilho Waldyr Lopes,
Cai XiaoChuan,
Znidarcic Dobroslav
Publication year - 2002
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.196
Subject(s) - consolidation (business) , centrifuge , numerical analysis , boundary value problem , partial differential equation , mathematics , geotechnical engineering , computer science , mathematical analysis , engineering , physics , accounting , nuclear physics , business
The consolidation and desiccation behaviour of soft soils can be described by two time‐dependent non‐linear partial differential equations using the finite strain theory. Analytical solutions do not exist for these governing equations. In this paper, we develop efficient numerical methods and software for finding the numerical solutions. We introduce a semi‐implicit time integration scheme, and show numerically that our method converges. In addition, the numerical solution matches well with the experimental result. A boundary refinement method is also developed to improve the convergence and stability for the case of Neumann type boundary conditions. Interface governing equations are derived to maintain the continuity of consolidation and desiccation processes. This is useful because the soil column can undergo desiccation on top and consolidation on the bottom simultaneously. The numerical algorithms has been implemented into a computer program and the results have been verified with centrifuge test results conducted in our laboratory. Copyright © 2001 John Wiley & Sons, Ltd.