Premium
A non‐linear rheological analysis of deeply located tunnels
Author(s) -
Akagi Tomoyuki,
Ichikawa Yasuaki,
Kuroda Hidetaka,
Kawamoto Toshikazu
Publication year - 1984
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.1610080505
Subject(s) - rheology , stiffness , finite element method , geotechnical engineering , geology , mechanics , structural engineering , materials science , engineering , physics , composite material
A rheological model which is able to explain the delayed failure phenomenon has been proposed and applied to the analysis of the time dependent behaviour of deep tunnels. The model is the three element Voigt type before yielding and becomes the five element Voigt type after yielding. This means that the stiffness of the model is decreased by yielding. It is assumed that the yielding takes place when the stored elastic energy density of distortion reaches a certain maximum value. Some experiments to determine material constants are proposed. The numerical results clearly exhibited a delayed failure state of the rock masses around the tunnel surface. It was found that the extension of the yielding zone due to tunnel excavation depends on the opening method.