z-logo
Premium
Finite deformation analysis of geomaterials
Author(s) -
Jeremić Boris,
Runesson Kenneth,
Sture Stein
Publication year - 2001
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.155
Subject(s) - dilatant , hyperelastic material , yield surface , mechanics , plasticity , deformation (meteorology) , finite element method , isotropy , finite strain theory , constitutive equation , von mises yield criterion , geomechanics , materials science , numerical analysis , stress path , geotechnical engineering , mathematics , structural engineering , geology , physics , mathematical analysis , engineering , composite material , quantum mechanics
Abstract The mathematical structure and numerical analysis of classical small deformation elasto–plasticity is generally well established. However, development of large deformation elastic–plastic numerical formulation for dilatant, pressure sensitive material models is still a research area. In this paper we present development of the finite element formulation and implementation for large deformation, elastic–plastic analysis of geomaterials. Our developments are based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts. A consistent linearization of the right deformation tensor together with the Newton method at the constitutive and global levels leads toward an efficient and robust numerical algorithm. The presented numerical formulation is capable of accurately modelling dilatant, pressure sensitive isotropic and anisotropic geomaterials subjected to large deformations. In particular, the formulation is capable of simulating the behaviour of geomaterials in which eigentriads of stress and strain do not coincide during the loading process. The algorithm is tested in conjunction with the novel hyperelasto–plastic model termed the B material model, which is a single surface (single yield surface, affine single ultimate surface and affine single potential surface) model for dilatant, pressure sensitive, hardening and softening geomaterials. It is specifically developed to model large deformation hyperelasto–plastic problems in geomechanics. We present an application of this formulation to numerical analysis of low confinement tests on cohesionless granular soil specimens recently performed in a SPACEHAB module aboard the Space Shuttle during the STS‐89 mission. We compare numerical modelling with test results and show the significance of added confinement by the thin hyperelastic latex membrane undergoing large stretching. Copyright © 2001 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here