Premium
Intermuscle differences in activation
Author(s) -
Behm D.G.,
Whittle J.,
Button D.,
Power K.
Publication year - 2002
Publication title -
muscle and nerve
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.025
H-Index - 145
eISSN - 1097-4598
pISSN - 0148-639X
DOI - 10.1002/mus.10008
Subject(s) - isometric exercise , stimulation , medicine , physical medicine and rehabilitation , tetanic stimulation , quadriceps femoris muscle , plantar flexion , muscle contraction , physical therapy , anatomy , chemistry , cardiology , endocrinology , receptor , ankle , neurotransmission
The objective of this study was to investigate differences within individual subjects in the ability to activate the quadriceps, plantar flexors (PF), dorsiflexors (DF), and elbow flexors (EF) during isometric contractions. Twelve male subjects performed submaximal and maximal voluntary isometric contractions, and maximal tetanic contractions were also induced by electrical stimulation. The interpolated twitch technique was used to gauge the extent of muscle inactivation or inability to produce maximum force. Measurements included torque output, absolute and relative rate of force development (RFD), and percentage of muscle inactivation. The quadriceps exceeded all other muscle groups in voluntary and tetanic torque output, voluntary absolute RFD, and absolute and relative tetanic RFD. The quadriceps also exceeded the PF and DF in voluntary relative RFD and had greater muscle inactivation (15.5%) than the EF (5.0%), PF (5.0%), and DF (1.3%). Although the higher RFD may suggest a higher percentage of type II fibers in the quadriceps, their higher threshold of recruitment leads to greater difficulty in fully activating the quadriceps. © 2002 John Wiley & Sons, Inc. Muscle Nerve 25: 236–243, 2002 DOI 10.1002/mus.10008