Premium
Identifying the source of spurious signals caused by B 0 inhomogeneities in single‐voxel 1 H MRS
Author(s) -
Shams Zahra,
Klomp Dennis W. J.,
Boer Vincent O.,
Wijnen Jannie P.,
Wiegers Evita C.
Publication year - 2022
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.29222
Subject(s) - spurious relationship , physics , computer science , chemistry , machine learning
Purpose Single‐voxel MRS (SV MRS) requires robust volume localization as well as optimized crusher and phase‐cycling schemes to reduce artifacts arising from signal outside the volume of interest. However, due to local magnetic field gradients (B 0 inhomogeneities), signal that was dephased by the crusher gradients during acquisition might rephase, leading to artifacts in the spectrum. Here, we analyzed this mechanism, aiming to identify the source of signals arising from unwanted coherence pathways (spurious signals) in SV MRS from a B 0 map. Methods We investigated all possible coherence pathways associated with imperfect localization in a semi‐localized by adiabatic selective refocusing (semi‐LASER) sequence for potential rephasing of signals arising from unwanted coherence pathways by a local magnetic field gradient. We searched for locations in the B 0 map where the signal dephasing due to external (crusher) and internal (B 0 ) field gradients canceled out. To confirm the mechanism, SV‐MR spectra (TE = 31 ms) and 3D‐CSI data with the same volume localization as the SV experiments were acquired from a phantom and 2 healthy volunteers. Results Our analysis revealed that potential sources of spurious signals were scattered over multiple locations throughout the brain. This was confirmed by 3D‐CSI data. Moreover, we showed that the number of potential locations where spurious signals could originate from monotonically decreases with crusher strength. Conclusion We proposed a method to identify the source of spurious signals in SV 1 H MRS using a B 0 map. This can facilitate MRS sequence design to be less sensitive to experimental artifacts.