Premium
Minimal artifact actively shimmed metallic needles in MRI
Author(s) -
Sengupta Saikat,
Yan Xinqiang,
Hoyt Tamarya L.,
Drake Gary,
Gunderman Anthony,
Chen Yue
Publication year - 2022
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.28977
Subject(s) - shim (computing) , imaging phantom , materials science , biomedical engineering , electromagnetic coil , gradient echo , pulse sequence , transducer , insert (composites) , signal (programming language) , nuclear magnetic resonance , magnetic resonance imaging , acoustics , computer science , nuclear medicine , physics , radiology , composite material , surgery , medicine , quantum mechanics , erectile dysfunction , programming language
Purpose Signal voids caused by metallic needles pose visualization and monitoring challenges in many MRI applications. In this work, we explore a solution to this problem in the form of an active shim insert that fits inside a needle and corrects the field disturbance (ΔB 0 ) caused by the needle outside of it. Methods The ΔB 0 induced by a 4 mm outside‐diameter titanium needle at 3T is modeled and a two‐coil orthogonal shim set is designed and fabricated to shim the ΔB 0 . Signal recovery around the needle is assessed in multiple orientations in a water phantom with four different pulse sequences. Phase stability around the needle is assessed in an ex‐vivo porcine tissue dynamic gradient echo experiment with and without shimming. Additionally, heating of the shim insert is assessed under 8 min of continuous operation with 1A current and concurrent imaging. Results An average recovery of ~63% of lost signal around the needle across orientations is shown with active shimming with a maximum current of 1.172 A. Signal recovery and correction of the underlying ΔB 0 is shown to be independent of imaging sequence. Needle‐induced phase gradients outside the perceptible signal void are also minimized with active shimming. Temperature rise of up to 0.9° Celsius is noted over 8 min of continuous 1A active shimming operation. Conclusion A sequence independent method for minimization of metallic needle induced signal loss using an active shim insert is presented. The method has potential benefits in a range of qualitative and quantitative interventional MRI applications.