z-logo
Premium
Robust RF shimming and small‐tip‐angle multispoke pulse design with finite‐difference regularization
Author(s) -
Paez Adrian,
Gu Chunming,
Cao Zhipeng
Publication year - 2021
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.28820
Subject(s) - flip angle , rf power amplifier , regularization (linguistics) , radio frequency , robustness (evolution) , monotonic function , algorithm , finite element method , mathematics , computer science , physics , magnetic resonance imaging , mathematical analysis , artificial intelligence , bandwidth (computing) , thermodynamics , medicine , amplifier , computer network , telecommunications , biochemistry , chemistry , gene , radiology
Purpose A new regularizer is proposed for the magnitude least‐squares optimization algorithm, to ensure robust parallel transmit RF shimming and small‐tip‐angle multispoke pulse designs for ultrahigh‐field MRI. Methods A finite‐difference regularization term is activated as an additional regularizer in the iterative magnitude‐least‐squares based pulse design algorithm when an unwanted flip angle null distribution is detected. Both simulated and experimental B 1 + maps from different transmit arrays and different human subjects at 7 T were used to evaluate the proposed algorithm. The algorithm was further demonstrated in experiment with dynamic multislice RF shimming for a single‐shot gradient‐echo EPI for human functional MRI at 7 T. Results The proposed finite‐difference regularizer effectively prevented excitation null to be formed for RF shimming and small‐tip‐angle multispoke pulses, and improved the latter with a monotonic trade‐off relationship between flip angle error and RF power. The proposed algorithm was demonstrated to be effective with several head‐array geometries by simulation and with a commercial head array with 12 healthy human subjects by experiment. During a functional MRI scan at 7 T with dynamic RF shimming, the proposed algorithm ensured high image SNR throughout the human brain, compared with near‐complete local signal loss by the conventional magnitude‐least‐squares algorithm. Conclusion Using finite‐difference regularization to avoid unwanted solutions, the robustness of RF shimming and small‐tip‐angle multispoke pulse design algorithms are improved, with better flip angle homogeneity and a monotonic trade‐off relationship between flip angle error and RF power.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here