Premium
Black blood myocardial T 2 mapping
Author(s) -
Wang Chengyan,
Jang Jihye,
Neisius Ulf,
Nezafat Maryam,
Fahmy Ahmed,
Kang Jinkyu,
Rodriguez Jennifer,
Goddu Beth,
Pierce Patrick,
Berg Sophie,
Zhang Jue,
Wang Xiaoying,
Nezafat Reza
Publication year - 2019
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.27360
Subject(s) - blood flow , cardiology , myocardial infarction , medicine , heart rate , imaging phantom , nuclear medicine , endocardium , blood pressure
Purpose To develop a black blood heart‐rate adaptive T 2 ‐prepared balanced steady‐state free‐precession (BEATS) sequence for myocardial T 2 mapping. Methods In BEATS, blood suppression is achieved by using a combination of preexcitation and double inversion recovery pulses. The timing and flip angles of the preexcitation pulse are auto‐calculated in each patient based on heart rate. Numerical simulations, phantom studies, and in vivo studies were conducted to evaluate the performance of BEATS. BEATS T 2 maps were acquired in 36 patients referred for clinical cardiac MRI and in 1 swine with recent myocardial infarction. Two readers assessed all images acquired in patients to identify the presence of artifacts associated with slow blood flow. Results Phantom experiments showed that the BEATS sequence provided accurate T 2 values over a wide range of simulated heart rates. Black blood myocardial T 2 maps were successfully obtained in all subjects. No significant difference was found between the average T 2 measurements obtained from the BEATS and conventional bright‐blood T 2 ; however, there was a decrease in precision using the BEATS sequence. A suppression of the blood pool resulted in sharper definition of the blood–myocardium border and reduced partial voluming effect. The subjective assessment showed that 16% (18 out of 108) of short‐axis slices have residual blood artifacts (12 in the apical slice, 4 in the midventricular slice, and 2 in the basal slice). Conclusion The BEATS sequence yields dark blood myocardial T 2 maps with better definition of the blood–myocardium border. Further studies are warranted to evaluate diagnostic accuracy of black blood T 2 mapping.