z-logo
Premium
Empirical single sample quantification of bias and variance in Q‐ball imaging
Author(s) -
Hainline Allison E.,
Nath Vishwesh,
Parvathaneni Prasanna,
Blaber Justin A.,
Schilling Kurt G.,
Anderson Adam W.,
Kang Hakmook,
Landman Bennett A.
Publication year - 2018
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.27115
Subject(s) - mathematics , fractional anisotropy , anisotropy , pointwise , statistics , resampling , variance (accounting) , extrapolation , diffusion mri , algorithm , physics , optics , mathematical analysis , medicine , accounting , magnetic resonance imaging , business , radiology
Purpose The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. Methods The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q‐ball imaging reconstruction of high angular resolution diffusion imaging data. Results The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Conclusion Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here