z-logo
Premium
Assignment of the molecular origins of CEST signals at 2 ppm in rat brain
Author(s) -
Zhang XiaoYong,
Xie Jingping,
Wang Feng,
Lin Eugene C.,
Xu Junzhong,
Gochberg Daniel F.,
Gore John C.,
Zu Zhongliang
Publication year - 2017
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.26802
Subject(s) - creatine , chemistry , nuclear magnetic resonance , biochemistry , physics
Purpose Chemical exchange saturation transfer effects at 2 ppm (CEST@2ppm) in brain have previously been interpreted as originating from creatine. However, protein guanidino amine protons may also contribute to CEST@2ppm. This study aims to investigate the molecular origins and specificity of CEST@2ppm in brain. Methods Two experiments were performed: (i) samples containing egg white albumin and creatine were dialyzed using a semipermeable membrane to demonstrate that proteins and creatine can be separated by this method; and (ii) tissue homogenates of rat brain with and without dialysis to remove creatine were studied to measure the relative contributions of proteins and creatine to CEST@2ppm. Results The experiments indicate that dialysis can successfully remove creatine from proteins. Measurements on tissue homogenates show that, with the removal of creatine via dialysis, CEST@2ppm decreases to approximately 34% of its value before dialysis, which indicates that proteins and creatine have comparable contribution to the CEST@2ppm in brain. However, considering the contribution from peptides and amino acids to CEST@2ppm, creatine may have much less contribution to CEST@2ppm. Conclusions The contribution of proteins, peptides, and amino acids to CEST@2ppm cannot be neglected. The CEST@2ppm measurements of creatine in rat brain should be interpreted with caution. Magn Reson Med 78:881–887, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom