z-logo
Premium
(2 + 1)D‐CAIPIRINHA accelerated MR spectroscopic imaging of the brain at 7T
Author(s) -
Strasser B.,
Považan M.,
Hangel G.,
Hingerl L.,
Chmelik M.,
Gruber S.,
Trattnig S.,
Bogner W.
Publication year - 2017
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.26386
Subject(s) - scanner , nuclear magnetic resonance , undersampling , artifact (error) , magnetic resonance spectroscopic imaging , multislice , mean squared error , imaging phantom , magnetic resonance imaging , acceleration , root mean square , nuclear medicine , physics , chemistry , mathematics , computer science , artificial intelligence , medicine , optics , radiology , statistics , classical mechanics , quantum mechanics
Purpose To compare a new parallel imaging (PI) method for multislice proton magnetic resonance spectroscopic imaging ( 1 H‐MRSI), termed (2 + 1)D‐CAIPIRINHA, with two standard PI methods: 2D‐GRAPPA and 2D‐CAIPIRINHA at 7 Tesla (T). Methods (2 + 1)D‐CAIPIRINHA is a combination of 2D‐CAIPIRINHA and slice‐CAIPIRINHA. Eight healthy volunteers were measured on a 7T MR scanner using a 32‐channel head coil. The best undersampling patterns were estimated for all three PI methods. The artifact powers, g‐factors, Cramér–Rao lower bounds (CRLB), and root mean square errors (RMSE) were compared quantitatively among the three PI methods. Metabolic maps and spectra were compared qualitatively. Results (2 + 1)D‐CAIPIRINHA allows acceleration in three spatial dimensions in contrast to 2D‐GRAPPA and 2D‐CAIPIRINHA. Thus, this sequence significantly decreased the RMSE of the metabolic maps by 12.1 and 6.9%, on average, for 4 < R < 11, compared with 2D‐GRAPPA and 2D‐CAIPIRINHA, respectively. The artifact power was 22.6 and 8.4% lower, and the CRLB were 3.4 and 0.6% lower, respectively. Conclusion (2 + 1)‐CAIPIRINHA can be implemented for multislice MRSI in the brain, enabling higher accelerations than possible with two‐dimensional (2D) parallel imaging methods. An eight‐fold acceleration was still feasible in vivo with negligible PI artifacts with lipid decontamination, thus decreasing the measurement time from 120 to 15 min for a 64 × 64 × 4 matrix. Magn Reson Med 78:429–440, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here