z-logo
Premium
PGSE , OGSE , and sensitivity to axon diameter in diffusion MRI : Insight from a simulation study
Author(s) -
Drobnjak Ivana,
Zhang Hui,
Ianuş Andrada,
Kaden Enrico,
Alexander Daniel C
Publication year - 2016
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.25631
Subject(s) - sensitivity (control systems) , axon , diffusion , signal (programming language) , perpendicular , nuclear magnetic resonance , spin echo , chemistry , orientation (vector space) , biological system , physics , materials science , molecular physics , acoustics , mathematics , computer science , geometry , magnetic resonance imaging , thermodynamics , anatomy , electronic engineering , medicine , radiology , biology , engineering , programming language
Purpose To identify optimal pulsed gradient spin‐echo (PGSE) and oscillating gradient spin‐echo (OGSE) sequence settings for maximizing sensitivity to axon diameter in idealized and practical conditions. Methods Simulations on a simple two‐compartment white matter model (with nonpermeable cylinders) are used to investigate a wide space of clinically plausible PGSE and OGSE sequence parameters with trapezoidal diffusion gradient waveforms. Signal sensitivity is measured as a derivative of the signal with respect to axon diameter. Models of parallel and dispersed fibers are investigated separately to represent idealized and practical conditions. Results Simulations show that, for the simple case of gradients perfectly perpendicular to straight parallel fibers, PGSE always gives maximum sensitivity. However, in real‐world scenarios where fibers have unknown and dispersed orientation, low‐frequency OGSE provides higher sensitivity. Maximum sensitivity results show that on current clinical scanners ( G max  = 60 mT/m, signal to noise ratio (SNR) = 20) axon diameters below 6 µm are indistinguishable from zero. Scanners with stronger gradient systems such as the Massachusetts General Hospital (MGH) Connectom scanner ( G max  = 300 mT/m) can extend this sensitivity limit down to 2–3 µm, probing a much greater proportion of the underlying axon diameter distribution. Conclusion Low‐frequency OGSE provides additional sensitivity to PGSE in practical situations. OGSE is particularly advantageous for systems with high performance gradients. Magn Reson Med 75:688–700, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here