z-logo
Premium
Accelerating 4D flow MRI by exploiting vector field divergence regularization
Author(s) -
Santelli Claudio,
Loecher Michael,
Busch Julia,
Wieben Oliver,
Schaeffter Tobias,
Kozerke Sebastian
Publication year - 2016
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.25563
Subject(s) - vector field , regularization (linguistics) , curl (programming language) , imaging phantom , divergence (linguistics) , iterative reconstruction , vector flow , compressed sensing , mathematics , algorithm , computer science , mathematical analysis , physics , artificial intelligence , geometry , optics , image (mathematics) , image segmentation , linguistics , philosophy , programming language
Purpose To improve velocity vector field reconstruction from undersampled four‐dimensional (4D) flow MRI by penalizing divergence of the measured flow field. Theory and Methods Iterative image reconstruction in which magnitude and phase are regularized separately in alternating iterations was implemented. The approach allows incorporating prior knowledge of the flow field being imaged. In the present work, velocity data were regularized to reduce divergence, using either divergence‐free wavelets (DFW) or a finite difference (FD) method using the ℓ 1 ‐norm of divergence and curl. The reconstruction methods were tested on a numerical phantom and in vivo data. Results of the DFW and FD approaches were compared with data obtained with standard compressed sensing (CS) reconstruction. Results Relative to standard CS, directional errors of vector fields and divergence were reduced by 55–60% and 38–48% for three‐ and six‐fold undersampled data with the DFW and FD methods. Velocity vector displays of the numerical phantom and in vivo data were found to be improved upon DFW or FD reconstruction. Conclusion Regularization of vector field divergence in image reconstruction from undersampled 4D flow data is a valuable approach to improve reconstruction accuracy of velocity vector fields. Magn Reson Med 75:115–125, 2016. © 2015 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here