Premium
Influence of bone marrow composition on measurements of trabecular microstructure using decay due to diffusion in the internal field MRI: Simulations and clinical studies
Author(s) -
Sprinkhuizen Sara M.,
Ackerman Jerome L.,
Song YiQiao
Publication year - 2014
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.25061
Subject(s) - osteoporosis , bone marrow , in vivo , medicine , materials science , biomedical engineering , pathology , biology , microbiology and biotechnology
Purpose Decay due to diffusion in the internal field (DDIF) MRI allows for measurements of microstructures of porous materials at low spatial resolution and thus has potential for trabecular bone quality measurements. In trabecular bone, solid bone changes (osteoporosis) as well as changes in bone marrow composition occur. The influence of such changes on DDIF MRI was studied by simulations and in vivo measurements. Methods Monte Carlo simulations of DDIF in various trabecular bone models were conducted. Changes in solid bone and marrow composition were simulated with numerical bone erosion and marrow susceptibility variations. Additionally, in vivo measurements were performed in the lumbar spine of healthy volunteers aged 23–62 years. Results Simulations and in vivo results showed that 1) DDIF decay times decrease with increasing marrow fat and 2) the marrow fat percentage needs to be incorporated in the DDIF analysis to discriminate between healthy and osteoporotic solid bone structures. Conclusions Bone marrow composition plays an important role in DDIF MRI: incorporation of marrow fat percentage into DDIF MRI allowed for differentiation of young and old age groups (in vivo experiments). DDIF MRI may develop into a means of assessing osteoporosis and disorders that affect marrow composition. Magn Reson Med 72:1499–1508, 2014. © 2013 Wiley Periodicals, Inc.