z-logo
Premium
Analysis and correction of biases in cross‐relaxation MRI due to biexponential longitudinal relaxation
Author(s) -
Mossahebi Pouria,
Yarnykh Vasily L.,
Samsonov Alexey
Publication year - 2014
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.24677
Subject(s) - relaxation (psychology) , nuclear magnetic resonance , physics , medicine
Purpose Cross‐relaxation imaging (CRI) is a family of quantitative magnetization transfer techniques that utilize images obtained with off‐resonance saturation and longitudinal relaxation rate ( R 1 ) maps reconstructed by the variable flip angle (VFA) method. It was demonstrated recently that a significant bias in an apparent VFA R 1 estimation occurs in macromolecule‐rich tissues due to magnetization transfer (MT)‐induced biexponential behavior of longitudinal relaxation of water protons. The purpose of this article is to characterize theoretically and experimentally the resulting bias in the CRI maps and propose methods to correct it. Theory The modified CRI algorithm is proposed, which corrects for such biases and yields accurate parametric bound pool fraction f , cross‐relaxation rate k , and R 1 maps. Additionally, an analytical correction procedure is introduced to recalculate previously obtained parameter values. Results The systematic errors due to unaccounted MT‐induced biexponential relaxation can be characterized as an overestimation of R 1 , f , and k , with a relative bias comparable with the magnitude of f . The phantom and human in vivo experiments demonstrate that both proposed modified CRI and analytical correction approaches significantly improve the accuracy of the CRI method. Conclusion The accuracy of the CRI method can be considerably improved by taking into account the contribution of MT‐induced biexponential longitudinal relaxation into variable flip angle R 1 measurements. Magn Reson Med 71:830–838, 2014. © 2013 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here