Premium
Divalent metal transporter, DMT1: A novel MRI reporter protein
Author(s) -
Bartelle Benjamin B.,
Szulc Kamila U.,
SueroAbreu Giselle A.,
Rodriguez Joe J.,
Turnbull Daniel H.
Publication year - 2013
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.24509
Subject(s) - dmt1 , transporter , in vivo , ferritin , in vitro , chemistry , molecular imaging , biophysics , microbiology and biotechnology , nuclear magnetic resonance , biology , biochemistry , gene , genetics , physics
Manganese (Mn)‐enhanced MRI (MEMRI) has found a growing number of applications in anatomical and functional imaging in small animals, based on the cellular uptake of Mn ions in the brain, heart, and other organs. Previous studies have relied on endogenous mechanisms of paramagnetic Mn ion uptake and enhancement. To genetically control MEMRI signals, we reverse engineered a major component of the molecular machinery involved in Mn uptake, the divalent metal transporter, DMT1. DMT1 provides positive cellular enhancement in a manner that is highly sensitive and dynamic, allowing greater spatial and temporal resolution for MRI compared to previously proposed MRI reporters such as ferritin. We characterized the MEMRI signal enhancement properties of DMT1‐expressing cells, both in vitro and in vivo in mouse models of cancer and brain development. Our results show that DMT1 provides an effective genetic MRI reporter for a wide range of biological and preclinical imaging applications. Magn Reson Med 70:842–850, 2013. © 2012 Wiley Periodicals, Inc.