Premium
Buildup of image quality in view‐shared time‐resolved 3D CE‐MRA
Author(s) -
Johnson Casey P.,
Polley Thomas W.,
Glockner James F.,
Young Phillip M.,
Riederer Stephen J.
Publication year - 2013
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.24466
Subject(s) - undersampling , computer science , image quality , computer vision , artificial intelligence , contrast (vision) , angiography , imaging phantom , image (mathematics) , nuclear medicine , radiology , medicine
Time‐resolved three‐dimensional contrast‐enhanced MR angiography often relies on view sharing of peripheral k‐space data to enable acquisition of angiograms with both high spatial resolution and a rapid frame rate. It is typically assumed that k‐space will be fully sampled during passage of the contrast bolus arterial phase. However, this is not the case when view sharing is incomplete, for example, at the leading edge of an enhancing vessel or if acquisition time is limited as in fluoroscopic tracking for multistation bolus chase MR angiography. Incomplete view sharing will degrade image quality, for example, by reducing vessel signal and sharpness and increasing undersampling artifacts. In this work, the evolution of angiogram quality with view sharing is quantitatively assessed in phantom experiments and in vivo contrast‐enhanced MR angiography calf studies. It is demonstrated that there are multiple sets of sequence parameters that can yield a target image update time, but the choice of parameters can profoundly affect how image quality evolves with view sharing. A fundamental tradeoff between vessel signal and sharpness and its relationship to the sequence temporal footprint is investigated and discussed. Magn Reson Med 70:348–357, 2013. © 2012 Wiley Periodicals, Inc.