Premium
Assessment of cell infiltration in myocardial infarction: A dose‐dependent study using micrometer‐sized iron oxide particles
Author(s) -
Yang Yidong,
Liu Jimei,
Yang Yuhui,
Cho Sang Hyun,
Hu Tom C.C.
Publication year - 2011
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.22890
Subject(s) - infiltration (hvac) , iron oxide , attenuation , medicine , myocardial infarction , magnetic resonance imaging , pathological , oxide , infarction , cell , cardiology , pathology , chemistry , materials science , radiology , physics , organic chemistry , optics , composite material , biochemistry
Myocardial infarction (MI) is a leading cause of death and disabilities. Inflammatory cells play a vital role in the process of postinfarction remodeling and repair. Inflammatory cell infiltration into the infarct site can be monitored using T 2 * ‐weighted MRI following an intravenous administration of iron oxide particles. In this study, various doses of micrometer‐sized iron oxide particles (1.1–14.5 μg Fe/g body weight) were injected into the mouse blood stream before a surgical induction of MI. Cardiac MRIs were performed at 3, 7, 14, and 21 days postinfarction to monitor the signal attenuation at the infarct site. A dose‐dependent phenomenon of signal attenuation was observed at the infarct site, with a higher dose leading to a darker signal. The study suggests an optimal temporal window for monitoring iron oxide particles‐labeled inflammatory cell infiltration to the infarct site using MRI. The dose‐dependent signal attenuation also indicates an optimal iron oxide dose of approximately 9.1–14.5 μg Fe/g body weight. A lower dose cannot differentiate the signal attenuation, whereas a higher dose would cause significant artifacts. This iron oxide‐enhanced MRI technique can potentially be used to monitor cell migration and infiltration at the pathological site or to confirm any cellular response following some specific treatment strategies. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.