z-logo
Premium
First‐pass contrast‐enhanced myocardial perfusion MRI in mice on a 3‐T clinical MR scanner
Author(s) -
Makowski Marcus,
Jansen Christian,
Webb Ian,
Chiribiri Amedeo,
Nagel Eike,
Botnar Rene,
Kozerke Sebastian,
Plein Sven
Publication year - 2010
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.22470
Subject(s) - undersampling , perfusion , scanner , nuclear medicine , blood flow , magnetic resonance imaging , medicine , deconvolution , perfusion scanning , biomedical engineering , radiology , computer science , artificial intelligence , algorithm
First‐pass contrast‐enhanced myocardial perfusion MRI in rodents has so far not been possible due to the temporal and spatial resolution requirements. We developed a new first‐pass perfusion MR method for rodent imaging on a clinical 3.0‐T scanner (Philips Healthcare, Best, The Netherlands) that employed 10‐fold k ‐space and time domain undersampling with constrained image reconstruction, using temporal basis sets ( k‐t principle component analysis) to achieve a spatial resolution of 0.2 × 0.2 × 1.5mm 3 and an acquisition window of 43 msec. The method was successfully tested in five healthy and four infarcted mice (C57BL/6J) at heart rates of 495.1 ± 45.8 beats/min. Signal‐intensity‐time profiles showed a percentage myocardial signal increase of 141.3 ± 38.9% in normal mice, compared with 44.7 ± 32.4% in infarcted segments. Mean myocardial blood flow by Fermi function for constrained deconvolution in control mice was 7.3 ± 1.5 mL/g/min, comparable to published literature, with no significant differences between three myocardial segments. In infarcted segments, myocardial blood flow was significantly reduced to 1.2 ± 0.8 mL/g/min ( P < 0.01). This is the first report of first‐pass myocardial perfusion MR in a mouse model on a clinical 3‐T MR scanner and using a k‐t undersampling method. Data were acquired on a 3‐T scanner, using an approach similar to clinical acquisition protocols, thus facilitating translation of imaging findings between rodent and human studies. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom