z-logo
Premium
Reconstruction of MRI data encoded with arbitrarily shaped, curvilinear, nonbijective magnetic fields
Author(s) -
Schultz Gerrit,
Ullmann Peter,
Lehr Heinrich,
Welz Anna M.,
Hennig Jürgen,
Zaitsev Maxim
Publication year - 2010
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.22393
Subject(s) - curvilinear coordinates , cartesian coordinate system , encoding (memory) , computer science , truncation (statistics) , algorithm , context (archaeology) , iterative reconstruction , image resolution , sensitivity (control systems) , artificial intelligence , computer vision , mathematics , geometry , paleontology , machine learning , electronic engineering , engineering , biology
A basic framework for image reconstruction from spatial encoding by curvilinear, nonbijective magnetic encoding fields in combination with multiple receivers is presented. The theory was developed in the context of the recently introduced parallel imaging technique using localized gradients (PatLoc) approach. In this new imaging modality, the linear gradient fields are generalized to arbitrarily shaped, nonbijective spatial encoding magnetic fields, which lead to ambiguous encoding. Ambiguities are resolved by adaptation of concepts developed for parallel imaging. Based on theoretical considerations, a practical algorithm for Cartesian trajectories is derived in the case that the conventional gradient coils are replaced by coils for PatLoc. The reconstruction method extends Cartesian sensitivity encoding (SENSE) reconstruction with an additional voxelwise intensity‐correction step. Spatially varying resolution, signal‐to‐noise ratio, and truncation artifacts are described and analyzed. Theoretical considerations are validated by two‐dimensional simulations based on multipolar encoding fields and they are confirmed by applying the reconstruction algorithm to initial experimental data. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here