z-logo
Premium
Improved 3‐Tesla cardiac cine imaging using wideband
Author(s) -
Lee HsuLei,
Shankaranarayanan Ajit,
Pohost Gerald M.,
Nayak Krishna S.
Publication year - 2010
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.22384
Subject(s) - steady state free precession imaging , wideband , temporal resolution , image resolution , signal (programming language) , pulse sequence , pulse (music) , nuclear magnetic resonance , signal to noise ratio (imaging) , noise (video) , magnetic resonance imaging , physics , computer science , optics , medicine , radiology , artificial intelligence , image (mathematics) , detector , programming language
Cine balanced steady‐state free precession (SSFP) is the most widely used sequence for assessing cardiac ventricular function at 1.5 T because it provides high signal‐to‐noise ratio efficiency and strong contrast between myocardium and blood. At 3 T, the use of SSFP is limited by susceptibility‐induced off‐resonance, resulting in either banding artifacts or the need to use a short‐sequence pulse repetition time that limits the readout duration and hence the achievable spatial resolution. In this work, we apply wideband SSFP, a variant of SSFP that uses two alternating pulse repetition times to establish a steady state with wider band spacing in its frequency response and overcome the key limitations of SSFP. Prospectively gated cine two‐dimensional imaging with wideband SSFP is evaluated in healthy volunteers and compared to conventional balanced SSFP, using quantitative metrics and qualitative interpretation by experienced clinicians. We demonstrate that by trading off temporal resolution and signal‐to‐noise ratio efficiency, wideband SSFP mitigates banding artifacts and enables imaging with approximately 30% higher spatial resolution compared to conventional SSFP with the same effective band spacing. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here