z-logo
Premium
In vivo MRI measurement of fetal blood oxygen saturation in cardiac ventricles of fetal sheep: A feasibility study
Author(s) -
Wedegärtner Ulrike,
Kooijman Hendrik,
Yamamura Jin,
Frisch Michael,
Weber Christoph,
Buchert Ralph,
Huff Anna,
Hecher Kurt,
Adam Gerhard
Publication year - 2010
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.22344
Subject(s) - fetus , oxygen saturation , in vivo , cardiac ventricle , medicine , oxygen , fetal heart , cardiology , biomedical engineering , chemistry , pregnancy , biology , ventricle , organic chemistry , microbiology and biotechnology , genetics
The purpose of this study was to assess the feasibility to determine fetal blood oxygen saturation (sO 2 ) with T 2 ‐weighted MR sequences using a fetal sheep model. T 2 measurements were performed on a 1.5‐T scanner using a T 2 preparation pulse in combination with a three‐dimensional balanced steady‐state free precession sequence repeated at different echo times. Eight sheep fetuses were examined during a control, hypoxic, and recovery phase to perform T 2 ‐weighted scans of the fetal blood in the heart. Signal intensities in the left and right ventricle were measured to calculate the MR blood sO 2 . During each phase, fetal carotid artery sO 2 was directly measured and correlated with MR sO 2 . A Bland‐Altman plot was performed. Fetal carotid artery sO 2 was 69% sO 2 during control, 16% sO 2 during hypoxemia, and 67% sO 2 during recovery. Mean values of the MR sO 2 were 49% sO 2 and 40% sO 2 for control, 6% sO 2 and 3% sO 2 for hypoxemia, and 51% sO 2 and 43% sO 2 for recovery in left ventricle and right ventricle, respectively. Mean values of fetal carotid artery sO 2 and MR sO 2 were highly correlated (left ventricle: r = 0.87, right ventricle: r = 0.89). According to the Bland‐Altman plot, MR sO 2 was lower compared to fetal carotid artery sO 2 (left ventricle: 15%, right ventricle: 20%). Based on our preliminary results, it seems to be possible to assess fetal sO 2 with MR oximetry. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom