Premium
Asymmetries of the balanced SSFP profile. Part I: Theory and observation
Author(s) -
Miller Karla L.
Publication year - 2010
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.22212
Subject(s) - precession , steady state free precession imaging , white matter , asymmetry , steady state (chemistry) , signal (programming language) , physics , nuclear magnetic resonance , homogeneous , magnetic resonance imaging , statistical physics , chemistry , condensed matter physics , computer science , quantum mechanics , medicine , radiology , programming language
Abstract The signal in balanced steady‐state free precession has a strong sensitivity to off‐resonance, which is typically described in terms of a signal “profile” over a range of frequencies. This profile has a well‐known form for homogeneous media with a single T 1 , T 2 , and resonance frequency, which is symmetric about the on‐resonance frequency. However, a straightforward extension to this established signal model predicts that the profile may become asymmetric in the presence of inhomogeneous frequency content, as would be expected to happen in tissue due to microstructural boundaries, compartments, and chemical shift. The presence of asymmetries in the balanced steady‐state free precession profile may therefore provide a marker of tissue integrity. This manuscript describes the theory behind balanced steady‐state free precession asymmetries, a method for detecting these effects, and the first measurements of balanced steady‐state free precession asymmetries in tissue. Asymmetries are found in gray matter, white matter, and muscle, with excellent reproducibility. A companion paper considers the large white matter asymmetries in more detail. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.