z-logo
Premium
Detection of lactate with a hadamard slice selected, selective multiple quantum coherence, chemical shift imaging sequence (HDMD‐SelMQC‐CSI) on a clinical MRI scanner: Application to tumors and muscle ischemia
Author(s) -
Mellon Eric A.,
Lee SeungCheol,
Pickup Stephen,
Kim Sungheon,
Goldstein Steven C.,
Floyd Thomas F.,
Poptani Harish,
Delikatny E. James,
Reddy Ravinder,
Glickson Jerry D.
Publication year - 2009
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.22141
Subject(s) - homonuclear molecule , nuclear magnetic resonance , hadamard transform , coherence (philosophical gambling strategy) , chemistry , physics , molecule , organic chemistry , quantum mechanics
Lactate is an important metabolite in normal and malignant tissues detectable by NMR spectroscopy; however, it has been difficult to clinically detect the lactate methyl resonance because it is obscured by lipid resonances. The selective homonuclear multiple quantum coherence transfer technique offers a method for distinguishing lipid and lactate resonances. We implemented a three‐dimensional selective homonuclear multiple quantum coherence transfer version with Hadamard slice selection and two‐dimensional phase encoding (Hadamard encoded–selective homonuclear multiple quantum coherence transfer–chemical shift imaging) on a conventional clinical MR scanner. Hadamard slice selection is explained and demonstrated in vivo. This is followed by 1‐cm 3 resolution lactate imaging with detection to 5‐mM concentration in 20 min on a 3‐T clinical scanner. An analysis of QSel gradient duration and amplitude effects on lactate and lipid signal is presented. To demonstrate clinical feasibility, a 5‐min lactate scan of a patient with a non‐Hodgkin's lymphoma in the superficial thigh is reported. The elevated lactate signal coincides with the T 2 ‐weighted image of this tumor. As a test of selective homonuclear multiple quantum coherence transfer sensitivity, a thigh tourniquet was applied to a normal volunteer and an increase in lactate was detected immediately after tourniquet flow constriction. In conclusion, the Hadamard encoded–selective homonuclear multiple quantum coherence transfer–chemical shift imaging sequence is demonstrated on a phantom and in two lipid‐rich, clinically relevant, in vivo conditions. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here