Premium
Prospective real‐time correction for arbitrary head motion using active markers
Author(s) -
Ooi Melvyn B.,
Krueger Sascha,
Thomas William J.,
Swaminathan Srirama V.,
Brown Truman R.
Publication year - 2009
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.22082
Subject(s) - computer science , computer vision , artificial intelligence , image quality , match moving , transformation (genetics) , motion (physics) , tracking (education) , orientation (vector space) , population , image (mathematics) , mathematics , medicine , psychology , pedagogy , biochemistry , chemistry , geometry , environmental health , gene
Patient motion during an MRI exam can result in major degradation of image quality, and is of increasing concern due to the aging population and its associated diseases. This work presents a general strategy for real‐time, intraimage compensation of rigid‐body motion that is compatible with multiple imaging sequences. Image quality improvements are established for structural brain MRI acquired during volunteer motion. A headband integrated with three active markers is secured to the forehead. Prospective correction is achieved by interleaving a rapid track‐and‐update module into the imaging sequence. For every repetition of this module, a short tracking pulse‐sequence remeasures the marker positions; during head motion, the rigid‐body transformation that realigns the markers to their initial positions is fed back to adaptively update the image‐plane—maintaining it at a fixed orientation relative to the head—before the next imaging segment of k ‐space is acquired. In cases of extreme motion, corrupted lines of k ‐space are rejected and reacquired with the updated geometry. High‐precision tracking measurements (0.01 mm) and corrections are accomplished in a temporal resolution (37 ms) suitable for real‐time application. The correction package requires minimal additional hardware and is fully integrated into the standard user interface, promoting transferability to clinical practice. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.