z-logo
Premium
Quantitative analysis of first‐pass contrast‐enhanced myocardial perfusion MRI using a patlak plot method and blood saturation correction
Author(s) -
Ichihara Takashi,
Ishida Masaki,
Kitagawa Kakuya,
Ichikawa Yasutaka,
Natsume Takahiro,
Yamaki Noriyasu,
Maeda Hisato,
Takeda Kan,
Sakuma Hajime
Publication year - 2009
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.22018
Subject(s) - blood flow , coronary sinus , perfusion , nuclear medicine , perfusion scanning , intensity (physics) , medicine , cardiology , physics , quantum mechanics
The objectives of this study were to develop a method for quantifying myocardial K 1 and blood flow (MBF) with minimal operator interaction by using a Patlak plot method and to compare the MBF obtained by perfusion MRI with that from coronary sinus blood flow in the resting state. A method that can correct for the nonlinearity of the blood time–signal intensity curve on perfusion MR images was developed. Myocardial perfusion MR images were acquired with a saturation‐recovery balanced turbo field‐echo sequence in 10 patients. Coronary sinus blood flow was determined by phase‐contrast cine MRI, and the average MBF was calculated as coronary sinus blood flow divided by left ventricular (LV) mass obtained by cine MRI. Patlak plot analysis was performed using the saturation‐corrected blood time–signal intensity curve as an input function and the regional myocardial time–signal intensity curve as an output function. The mean MBF obtained by perfusion MRI was 86 ± 25 ml/min/100 g, showing good agreement with MBF calculated from coronary sinus blood flow (89 ± 30 ml/min/100 g, r = 0.74). The mean coefficient of variation for measuring regional MBF in 16 LV myocardial segments was 0.11. The current method using Patlak plot permits quantification of MBF with operator interaction limited to tracing the LV wall contours, registration, and time delays. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here