z-logo
Premium
3D cine displacement‐encoded MRI of pulsatile brain motion
Author(s) -
Soellinger Michaela,
Rutz Andrea K.,
Kozerke Sebastian,
Boesiger Peter
Publication year - 2009
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.21802
Subject(s) - pulsatile flow , thalamus , displacement (psychology) , nuclear magnetic resonance , reproducibility , caudate nucleus , neuroimaging , magnetic resonance imaging , biomedical engineering , physics , anatomy , nuclear medicine , medicine , chemistry , neuroscience , biology , radiology , cardiology , psychology , chromatography , psychotherapist
Pulsatile brain motion is considered to be an important mechanical link between blood and cerebrospinal fluid (CSF) dynamics. Like many severe brain diseases, different types of hydrocephalus are associated with impairment of these dynamics. In this work a cine displacement‐encoded imaging method employing stimulated echoes (DENSE) and a three‐dimensional (3D) segmented echo‐planar imaging (EPI) readout for brain motion measurements in all three spatial directions is presented. Displacement‐encoded data sets of 12 healthy volunteers were analyzed with respect to reproducibility, periodicity, and intra‐ as well as intersubject physiological consistency. In addition, displacement values were compared with data derived from phase‐contrast (PC) velocity measurements in a subset of all measured subjects. Using DENSE, displacements as low as 0.01 mm could be detected and observation of the 3D pulse pressure wave propagation was possible. Among other parameters, peak displacements in the central brain regions were measured: feet–head (FH): thalamus (0.13 ± 0.01 mm); right–left (RL): thalamus (0.06 ± 0.01 mm); and anterior–posterior (AP): caudate nucleus (0.05 ± 0.01 mm). Magn Reson Med 61:153–162, 2009. © 2008 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here