z-logo
Premium
Validation of oxygen extraction fraction measurement by qBOLD technique
Author(s) -
He Xiang,
Zhu Mingming,
Yablonskiy Dmitriy A.
Publication year - 2008
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.21719
Subject(s) - superior sagittal sinus , venous blood , oxygenation , biomedical engineering , nuclear medicine , nuclear magnetic resonance , medicine , physics , thrombosis
Measurement of brain tissue oxygen extraction fraction (OEF) in both baseline and functionally activated states can provide important information on brain functioning in health and disease. The recently proposed quantitative BOLD (qBOLD) technique is MRI‐based and provides a regional in vivo OEF measurement (He and Yablonskiy, MRM 2007, 57:115–126). It is based on a previously developed analytical BOLD model and incorporates prior knowledge about the brain tissue composition including the contributions from grey matter, white matter, cerebrospinal fluid, interstitial fluid and intravascular blood. The qBOLD model also allows for the separation of contributions to the BOLD signal from OEF and the deoxyhemoglobin containing blood volume (DBV). The objective of this study is to validate OEF measurements provided by the qBOLD approach. To this end we use a rat model and compare qBOLD OEF measurements against direct measurements of the blood oxygenation level obtained from venous blood drawn directly from the superior sagittal sinus. The cerebral venous oxygenation level of the rat was manipulated by utilizing different anestheisa methods. The study demonstrates a very good agreement between qBOLD approach and direct measurements. Magn Reson Med 60:882–888, 2008. © 2008 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here