z-logo
Premium
Baseline blood oxygenation modulates response amplitude: Physiologic basis for intersubject variations in functional MRI signals
Author(s) -
Lu Hanzhang,
Zhao Chenguang,
Ge Yulin,
LewisAmezcua Kelly
Publication year - 2008
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.21686
Subject(s) - oxygenation , functional magnetic resonance imaging , blood oxygenation , cerebral blood flow , magnetic resonance imaging , medicine , neuroscience , electroencephalography , cardiology , psychology , radiology
Although BOLD functional MRI (fMRI) provides a useful tool for probing neuronal activities, large intersubject variations in signal amplitude are commonly observed. Understanding the physiologic basis for these variations will have a significant impact on many fMRI studies. First, the physiologic modulator can be used as a regressor to reduce variations across subjects, thereby improving statistical power for detecting group differences. Second, if a pathologic condition or a drug treatment is shown to change fMRI responses, monitoring this modulatory parameter is useful in correctly interpreting the fMRI changes to neuronal deficits/recruitments. Here we present evidence that the task‐evoked fMRI signals are modulated by baseline blood oxygenation. To measure global blood oxygenation, we used a recently developed technique, T 2 relaxation under spin‐tagging (TRUST) MRI, which yielded baseline oxygenation of 63.7% ± 7.2% in the sagittal sinus with an estimation error of 1.3%. It was found that individuals with higher baseline oxygenation tend to have a smaller fMRI signal, and vice versa. For every 10% difference in baseline oxygenation across subjects, BOLD and cerebral blood flow (CBF) signals differ by –0.4% and –30.0%, respectively, when using visual stimulation. TRUST MRI is a useful measurement for fMRI studies to control for the modulatory effects of baseline oxygenation that are unique to each subject. Magn Reson Med 60:364–372, 2008. © 2008 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom