Premium
Novel MRI method to detect altered left ventricular ejection and filling patterns in rodent models of disease
Author(s) -
Stuckey Daniel J.,
Carr Carolyn A.,
Tyler Damian J.,
Aasum Ellen,
Clarke Kieran
Publication year - 2008
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.21677
Subject(s) - contractility , ejection fraction , medicine , reproducibility , cardiology , magnetic resonance imaging , cardiac cycle , diastole , cardiac function curve , ventricular function , nuclear medicine , ventricular filling , in vivo , rodent model , heart failure , radiology , chemistry , biology , microbiology and biotechnology , chromatography , blood pressure
The aim of this study was to determine whether high‐temporal‐resolution (HTR) cardiac cine‐MRI could be used to identify subtle alterations in contractility and diastolic function in rodent models of disease. Following standard 45‐min in vivo MRI measurements of left ventricular (LV) volumes, a single mid‐ventricular slice was selected for 3‐min HTR imaging. Cavity volume was measured every 2.4 ms, yielding approximately 60 images through the cardiac cycle. From these images, peak ejection and filling rates were calculated and two separate filling phases (comparable with the early (E) and late (A) phases of a Doppler echocardiogram) were identified during diastole. Repeated HTR imaging of the same animals on sequential days indicated reproducibility of E′/A′ ratios of 11%. In chronically infarcted rat hearts, HTR imaging revealed lower peak ejection rates (PERs), peak early filling rates (E′) and E′/A′ ratios, and higher peak late filling rates (A′) than in sham‐operated rats. Diabetic db / db mouse hearts had the same function as controls when using standard cine‐MRI, yet HTR imaging identified significantly lower PERs, early filling rates and E′/A′ ratios in diabetic mouse hearts. In conclusion, the HTR MRI technique revealed changes in function that were below the limits of detection of standard cine‐MRI. Magn Reson Med 60:582–587, 2008. © 2008 Wiley‐Liss, Inc.