Premium
Rapid magnetic resonance quantification on the brain: Optimization for clinical usage
Author(s) -
Warntjes J.B.M.,
Leinhard O. Dahlqvist,
West J.,
Lundberg P.
Publication year - 2008
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.21635
Subject(s) - multislice , magnetic resonance imaging , voxel , nuclear magnetic resonance , pulse (music) , spin echo , standard deviation , contrast (vision) , relaxation (psychology) , nuclear medicine , computer science , physics , optics , medicine , mathematics , radiology , artificial intelligence , statistics , detector
A method is presented for rapid simultaneous quantification of the longitudinal T 1 relaxation, the transverse T 2 relaxation, the proton density (PD), and the amplitude of the local radio frequency B 1 field. All four parameters are measured in one single scan by means of a multislice, multiecho, and multidelay acquisition. It is based on a previously reported method, which was substantially improved for routine clinical usage. The improvements comprise of the use of a multislice spin‐echo technique, a background phase correction, and a spin system simulation to compensate for the slice‐selective RF pulse profile effects. The aim of the optimization was to achieve the optimal result for the quantification of magnetic resonance parameters within a clinically acceptable time. One benchmark was high‐resolution coverage of the brain within 5 min. In this scan time the measured intersubject standard deviation (SD) in a group of volunteers was 2% to 8%, depending on the tissue (voxel size = 0.8 × 0.8 × 5 mm). As an example, the method was applied to a patient with multiple sclerosis in whom the diseased tissue could clearly be distinguished from healthy reference values. Additionally it was shown that, using the approach of synthetic MRI, both accurate conventional contrast images as well as quantification maps can be generated based on the same scan. Magn Reson Med 60:320–329, 2008. © 2008 Wiley‐Liss, Inc.