Premium
q ‐space diffusion of myelin‐deficient spinal cords
Author(s) -
Biton I.E.,
Duncan I.D.,
Cohen Y.
Publication year - 2007
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.21389
Subject(s) - diffusion , diffusion mri , nuclear magnetic resonance , white matter , chemistry , effective diffusion coefficient , myelin , anisotropic diffusion , anisotropy , anatomy , magnetic resonance imaging , medicine , central nervous system , physics , endocrinology , optics , radiology , thermodynamics
The apparent water diffusion anisotropy in white matter (WM) of excised spinal cords of myelin‐deficient ( md ) rats and their age‐matched controls was studied by high‐ b ‐value q ‐space diffusion MRS and MRI at different diffusion times. Non‐monoexponential signal decay was observed at long diffusion times. The mean displacements in the md spinal cords were found to be higher than those of the controls. The apparent anisotropy (AA) of the fast‐diffusing component was found to decrease more dramatically with the increase in diffusion time for the md spinal cords as compared with controls, whereas the AA of the slow‐diffusing component in the controls was found to increase with the increase in diffusion time while that of the md cords decreased with the increase in diffusion time. When diffusion MRI was performed, similar diffusion anisotropy was extracted for the md and control spinal cords at diffusion times of 22 and 50 ms. Only at a diffusion time of about 200 ms was a significant difference obtained in the AA of the two groups. This originates from the much smaller increase in the mean displacement perpendicular to the fiber direction in the control group vs. the md group when the diffusion time was increased. Magn Reson Med 58:993–1000, 2007. © 2007 Wiley‐Liss, Inc.