z-logo
Premium
Single breath‐hold whole‐heart MRA using variable‐density spirals at 3t
Author(s) -
Santos Juan M.,
Cunningham Charles H.,
Lustig Michael,
Hargreaves Brian A.,
Hu Bob S.,
Nishimura Dwight G.,
Pauly John M.
Publication year - 2006
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.20765
Subject(s) - undersampling , aliasing , artifact (error) , shim (computing) , spiral (railway) , computer science , image quality , multislice , artificial intelligence , mathematics , nuclear magnetic resonance , physics , medicine , image (mathematics) , mathematical analysis , erectile dysfunction
Multislice breath‐held coronary imaging techniques conventionally lack the coverage of free‐breathing 3D acquisitions but use a considerably shorter acquisition window during the cardiac cycle. This produces images with significantly less motion artifact but a lower signal‐to‐noise ratio (SNR). By using the extra SNR available at 3 T and undersampling k ‐space without introducing significant aliasing artifacts, we were able to acquire high‐resolution fat‐suppressed images of the whole heart in 17 heartbeats (a single breath‐hold). The basic pulse sequence consists of a spectral‐spatial excitation followed by a variable‐density spiral readout. This is combined with real‐time localization and a real‐time prospective shim correction. Images are reconstructed with the use of gridding, and advanced techniques are used to reduce aliasing artifacts. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom