Premium
Characterization of the NMR behavior of white matter in bovine brain
Author(s) -
Bjarnason T.A.,
Vavasour I.M.,
Chia C.L.L.,
MacKay A.L.
Publication year - 2005
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.20680
Subject(s) - myelin , white matter , chemistry , relaxation (psychology) , nuclear magnetic resonance , relaxometry , magnetization transfer , analytical chemistry (journal) , chromatography , magnetic resonance imaging , central nervous system , biology , physics , spin echo , endocrinology , medicine , neuroscience , radiology
In vitro experiments on 15 white matter samples from five bovine brains were performed on a 1 H‐NMR spectrometer at 24°C and 37°C. The average myelin water fractions (MWFs) were 10.9% and 11.8% for samples at 24°C and 37°C, respectively. The T 1 relaxation time at 37°C was found to be 830 ms, exhibiting monoexponential behavior. A four‐pool model including intra/extracellular (IE) water, myelin water, nonmyelin tissue, and myelin tissue was proposed to simulate the NMR behavior of bovine white matter. A cross‐relaxation correction was introduced to compensate for shifting of the measured data points and T 2 times over the duration of the Carr‐Purcell‐Meiboom‐Gill (CPMG) measurement due to cross relaxation. This correction was found to be slight, providing evidence that MWFs measured using a multiecho technique are near physical values. At 24°C the cross‐relaxation times between myelin tissue and myelin water, myelin water and IE water, and IE water and nonmyelin tissue were found to be approximately 227, 2064, and 402 ms, respectively. At 37°C these same cross‐relaxation times were 158, 1021, and 170 ms, respectively. The exchange rate between myelin water and myelin was found to be 11.8 s −1 at 37°C, while the exchange rate between IE water and nonmyelin tissue was found to be 6.8 s −1 . These exchange rates are of similar magnitude, which indicates that the interaction between IE water and nonmyelin tissue cannot be ignored. Magn Reson Med, 2005. © 2005 Wiley‐Liss, Inc.