Premium
Highly resolved in vivo 1 H NMR spectroscopy of the mouse brain at 9.4 T
Author(s) -
Tkáč Ivan,
Henry PierreGilles,
Andersen Peter,
Keene C. Dirk,
Low Walter C.,
Gruetter Rolf
Publication year - 2004
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.20184
Subject(s) - shim (computing) , nuclear magnetic resonance , in vivo , striatum , nuclear magnetic resonance spectroscopy , chemistry , spectroscopy , biology , neuroscience , medicine , physics , microbiology and biotechnology , erectile dysfunction , dopamine , quantum mechanics
An efficient shim system and an optimized localization sequence were used to measure in vivo 1 H NMR spectra from cerebral cortex, hippocampus, striatum, and cerebellum of C57BL/6 mice at 9.4 T. The combination of automatic first‐ and second‐order shimming (FASTMAP) with strong custom‐designed second‐order shim coils (shim strength up to 0.04 mT/cm 2 ) was crucial to achieve high spectral resolution (water line width of 11–14 Hz). Requirements for second‐order shim strengths to compensate field inhomogeneities in the mouse brain at 9.4 T were assessed. The achieved spectral quality (resolution, S/N, water suppression, localization performance) allowed reliable quantification of 16 brain metabolites (LCModel analysis) from 5–10‐μL brain volumes. Significant regional differences (up to 2‐fold, P < 0.05) were found for all quantified metabolites but Asp, Glc, and Gln. In contrast, 1 H NMR spectra measured from the striatum of C57BL/6, CBA, and CBA/BL6 mice revealed only small (<13%, P < 0.05) interstrain differences in Gln, Glu, Ins, Lac, NAAG, and PE. It is concluded that 1 H NMR spectroscopy at 9.4 T can provide precise biochemical information from distinct regions of the mouse brain noninvasively that can be used for monitoring of disease progression and treatment as well as phenotyping in transgenic mice models. Magn Reson Med 52:478–484, 2004. © 2004 Wiley‐Liss, Inc.