z-logo
Premium
Measurement of strain exerted on blood vessel walls by double‐quantum‐filtered 2 H NMR
Author(s) -
Sharf Yehuda,
Akselrod Solange,
Navon Gil
Publication year - 1997
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.1910370111
Subject(s) - strain (injury) , adventitia , materials science , blood vessel , aorta , artery , nuclear magnetic resonance , spectral line , coronary arteries , relaxation (psychology) , nmr spectra database , anatomy , medicine , physics , cardiology , astronomy
In this study 2 H double quantum‐filtered (DQF) NMR spectros‐copy of water molecules inside the blood vessel wall was used to monitor structural changes after the application of strain. This method was applied to a variety of bovine large blood vessels, including aorta, coronary artery, carotid artery, and vena cava. Inducing strain in coronary arteries by inflating them by air or water revealed dramatic changes in the 2 H DQF spectral lineshapes. Uniaxial extensions of longitudinal and circumferential strips led to distinct spectral responses for the different blood vessels. While the spectral lineshapes for the coronary and the carotid arteries were very sensitive to longitudinal strain, they were not affected by circumferential stretching. For the aorta there were no changes in the line‐shape upon strain. For the vena cava a large effect of strain was found that was independent of the choice of elongation axis. The effect of elongation on the spectra was assigned to the outer layer, the adventitia, whereas spectral lineshapes that originated from inner layers, media and intima, were almost insensitive to strain. Angular dependence experiments proved the presence of macroscopic order in the strained state superimposed on a broad distribution of the local directors. Our results demonstrate the sensitivity of 2 H DQF NMR as a probe for dynamic processes occurring on the microscopic scale in a molecular network. Key words: blood vessels; strain; double‐quantum; 2 H NMR.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here