Premium
A readout magnet for prepolarized MRI
Author(s) -
Morgan Patrick,
Conolly Steven,
Scott Greig,
Macovski Albert
Publication year - 1996
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.1910360405
Subject(s) - magnet , resistive touchscreen , electromagnet , scanner , magnetic field , superconducting magnet , computer science , physics , image quality , field strength , polarization (electrochemistry) , nuclear magnetic resonance , acoustics , optics , artificial intelligence , computer vision , image (mathematics) , chemistry , quantum mechanics
Conventional MRI systems rely on large magnets to generate a field that is both strong and extremely uniform. This field is usually produced by a heavy permanent magnet or a cryogenically cooled superconductor. An alternative approach, called prepolarized MRI (PMRI), employs two separate fields produced by two different magnets. A strong and inhomogeneous magnetic field is used to polarize the sample. After polarization, a weak magnetic field is used for readout. These fields can be produced by two separate resistive electromagnets that cost significantly less than a single permanent or superconducting magnet. At Stanford, the authors are constructing a PMRI prototype scanner suitable for imaging human extremities roughly 20 cm in diameter. With this system the authors hope to demonstrate comparable image quality to MRI with reduced system cost. The authors' initial work on low‐frequency reception indicates that it will be possible to obtain comparable image signal‐to‐noise ratio to an MRI scanner operating at the same polarizing field strength. To reduce the capital cost of the system, the authors use resistive electromagnets. Here the authors discuss the full development of the readout magnet including important design considerations, shimming, and field plots. These encouraging results are an important step toward evaluating the cost effectiveness of PMRI.