Premium
RF inhomogeneity compensation in structural brain imaging
Author(s) -
Deichmann R.,
Good C.D.,
Turner R.
Publication year - 2002
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.10050
Subject(s) - nuclear magnetic resonance , pulse (music) , contrast (vision) , physics , electromagnetic coil , excitation , phase (matter) , imaging phantom , encoding (memory) , computer science , optics , peripheral , materials science , artificial intelligence , quantum mechanics , detector , operating system
Three‐dimensional T 1 ‐weighted magnetization‐prepared rapid gradient‐echo (MP‐RAGE) sequences with centric phase encoding (PE) in the inner loop provide structural brain images with a high spatial resolution and high tissue contrast. A disadvantage of this sequence type is the susceptibility to inhomogeneities of the radiofrequency (RF) coil, which may result in poor image contrast in some peripheral regions. A special excitation pulse is presented which compensates for these effects in both the head/foot and anterior/posterior directions. This pulse has a duration of only 1.3 ms and is thus compatible with the short repetition times (TRs) required for MP‐RAGE imaging. It is shown experimentally that images acquired with the compensation pulse may be segmented without using intensity correction algorithms during data postprocessing. Magn Reson Med 47:398–402, 2002. © 2002 Wiley‐Liss, Inc.