Premium
Ring‐Opening Polymerization of Propylene Oxide by Double Metal Complex in Micro‐Reactor
Author(s) -
Zhao Jing,
Li BoGeng,
Bu ZhiYang,
Fan Hong
Publication year - 2020
Publication title -
macromolecular reaction engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.37
H-Index - 32
eISSN - 1862-8338
pISSN - 1862-832X
DOI - 10.1002/mren.201900048
Subject(s) - polymerization , monomer , molar mass distribution , chain transfer , polymer chemistry , residence time (fluid dynamics) , propylene oxide , chain propagation , living polymerization , induction period , catalysis , chemistry , materials science , residence time distribution , radical polymerization , polymer , organic chemistry , mineralogy , ethylene oxide , copolymer , inclusion (mineral) , geotechnical engineering , engineering
Abstract The ring‐opening polymerization of propylene oxide catalyzed by double metal complex (DMC) is carried out in continuous micro‐reactor (C‐MR). It is found that the monomer conversion at the C‐MR outlet is usually 100% within 2 min of average residence time, which means that the polymerization rate in the C‐MR is faster than that in a traditional semi‐continuous tank reactor. However, the induction period still exists in the polymerization in C‐MR, but can be shortened by increasing the reaction temperature or the micro‐reactor length. The mechanism of monomer coordination and ring opening on DMC during the induction period is confirmed by the 1 H NMR analysis of the samples obtained under very short average residence time. The molecular weight distribution (MWD) of product from C‐MR is generally narrow, which indicates that the process still maintain the characteristics of the “living” polymerization. That is, there is a very high rate ratio of chain transfer to chain propagation provided by the DMC catalyst. However, with the same average residence time, the MWD of product from the longer C‐MR is broader, which can be attributed to the increase of the chain propagation rate caused by rise of pressure.