z-logo
Premium
Methodological considerations for examining the relationship between sperm morphology and motility
Author(s) -
Hook Kristin A.,
Fisher Heidi S.
Publication year - 2020
Publication title -
molecular reproduction and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.745
H-Index - 105
eISSN - 1098-2795
pISSN - 1040-452X
DOI - 10.1002/mrd.23346
Subject(s) - biology , sperm , evolutionary biology , fertility , sperm motility , sperm competition , female sperm storage , motility , zoology , ecology , microbiology and biotechnology , genetics , population , demography , sociology
Abstract Sperm cells of all taxa share a common goal to reach and fertilize an ovum, yet sperm are one of the most diverse cell types in nature. While the structural diversity of these cells is well recognized, the functional significance of variation in sperm design remains elusive. An important function of spermatozoa is a need to migrate toward the ova, often over long distances in a foreign environment, which may include a complex and hostile female reproductive tract. Several comparative and experimental studies have attempted to address the link between sperm morphology and motility, yet the conclusions drawn from these studies are often inconsistent, even within the same taxa. Much of what we know about the functional significance of sperm design in internally fertilizing species has been gleaned from in vitro studies, for which experimental parameters often vary among studies. We propose that discordant results from these studies are in part due to a lack of consistency of methods, conditions that do not replicate those of the female reproductive tract, and the overuse of simple linear measures of sperm shape. Within this review, we provide a toolkit for imaging, quantifying, and analyzing sperm morphology and movement patterns for in vitro studies and discuss emerging approaches. Results from studies linking morphology to motility enhance our understanding of the evolution of adaptive sperm traits and the mechanisms that regulate fertility, thus offering new insights into methods used in assisted reproductive technologies in animal science, conservation and public health.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here