z-logo
Premium
Characterization and subcellular localization of Tektin 3 in rat spermatozoa
Author(s) -
Takiguchi Hiroe,
Murayama Emi,
Kaneko Takane,
Kurio Hitoshi,
Toshimori Kiyotaka,
Iida Hiroshi
Publication year - 2011
Publication title -
molecular reproduction and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.745
H-Index - 105
eISSN - 1098-2795
pISSN - 1040-452X
DOI - 10.1002/mrd.21352
Subject(s) - flagellum , acrosome , biology , immunogold labelling , immunoelectron microscopy , sperm , microbiology and biotechnology , epididymis , acrosome reaction , axoneme , sperm motility , ultrastructure , motility , anatomy , biochemistry , immunology , genetics , antibody , gene
Mammalian sperm flagella have filament‐forming Tektin proteins (Tektin 1–5) reported to be involved in the stability and structural complexity of flagella. Male mice null for Tektin3 produce spermatozoa with reduced forward progression and increased flagellar structural bending defects. The subcellular localization of Tektin3 (TEKT3) in spermatozoa, however, has not been clarified at the ultrastructural level. To elucidate the molecular localization of TEKT3 in flagella of rat spermatozoa, we performed extraction studies followed by immunoblot analysis, immunofluorescence microscopy, and immunogold electron microscopy. Extraction of sperm flagella from the cauda epididymis resulted in complete removal of axonemal tubulins, while TEKT3 was resistant to extraction with the same S‐EDTA (1% SDS, 75 mM NaCl, 24 mM EDTA, pH 7.6) solution, suggesting that TEKT3 might be present in the peri‐axonemal component and not directly associated with axonemal tubulins. Resistance to S‐EDTA extraction might be due to disulfide bond formation during epididymal maturation since concentrations of DTT greater than 5 mM drastically promoted release of TEKT3 from flagella. Immunofluorescence microscopy and pre‐embedding immunoelectron microscopy revealed that TEKT3 was predominantly associated with the surface of mitochondria and outer dense fibers in the middle piece. In addition, TEKT3 was found to be present at the equatorial segment region of the acrosome membrane in sperm heads. TEKT3 might not only work as a flagellar constituent required for flagellar stability and sperm motility but also may be involved in acrosome‐related events, such as the acrosome reaction or sperm–egg fusion. Mol. Reprod. Dev. 78:611–620, 2011. © 2011 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here