Premium
Mouse zygotes with one diploid pronucleus formed as a result of ICSI can develop normally beyond birth
Author(s) -
Krukowska Anna,
Tarkowski Andrzej K.
Publication year - 2005
Publication title -
molecular reproduction and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.745
H-Index - 105
eISSN - 1098-2795
pISSN - 1040-452X
DOI - 10.1002/mrd.20344
Subject(s) - pronucleus , biology , zygote , ploidy , andrology , male pronucleus , paternal age , genetics , embryo , embryogenesis , pregnancy , gene , offspring , medicine
A mouse spermatozoon was injected into mouse secondary oocytes (ICSI) in the vicinity of the metaphase spindle. In 22% of oocytes injected successfully, the maternal chromatin (the haploid chromatids formed after the second meiotic division) and paternal chromatin (from the sperm nucleus) were surrounded by a common nuclear envelope to form one diploid bi‐parental pronucleus. However, the use of spermatozoa in which BrdU had been incorporated into DNA during spermatogenesis revealed, that maternal and paternal chromatin occupied two separate compartments within the one pronucleus. In the living state, the diploid pronucleus could be distinguished from a haploid one by its distinctly larger size and by a greater number of “nucleolus‐like bodies”—criteria confirmed karylogically at the 1st cleavage division. Such zygotes with one diploid pronucleus were able to develop in vitro into blastocysts as often as those with two haploid pronuclei [11/29 (38%) vs. 14/35 (40%)]. Seventy nine 2‐cell embryos developing in vitro from zygotes with one diploid pronucleus were transplanted to the oviducts of pseudopregnant recipients: two females had six foetuses when killed on the 17th day, and two females gave birth to nine young, eight of which survived and developed into normal fertile animals. Mol. Reprod. Dev. © 2005 Wiley‐Liss, Inc.