z-logo
Premium
Detection of acidic paper recovery after alkaline nanoparticle treatment by 2D NMR relaxometry
Author(s) -
Poggi G.,
Parmentier A.,
Nourinaeini S.,
De Luca F.
Publication year - 2020
Publication title -
magnetic resonance in chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 72
eISSN - 1097-458X
pISSN - 0749-1581
DOI - 10.1002/mrc.5063
Subject(s) - cellulose , chemistry , relaxometry , solvent , degradation (telecommunications) , relaxation (psychology) , chemical engineering , organic chemistry , medicine , psychology , telecommunications , social psychology , spin echo , computer science , magnetic resonance imaging , engineering , radiology
Cellulose‐based artefacts are highly prone to degradation, especially in the presence of acidic compounds, which trigger the depolymerization of cellulose chains and lead to a loss in the original mechanical resistance of the material. Calcium hydroxide nanoparticles dispersed in organic solvent have been recently proposed for the deacidification of cellulose‐based artworks. In this work, changes induced on paper by a deacidification treatment, following an acidification bath, were studied by nuclear magnetic resonance (NMR) relaxometry and by the so‐called NMR diffraction of water trapped in the cellulose network. The deacidification treatment modifies intrachain and interchain bonds in hydrolyzed and degraded cellulose, leading to a buffered cellulose network configuration, which is similar to that characterizing the untreated reference sample in terms of relaxation parameters. Overall, calcium hydroxide nanoparticles are demonstrated effective in hindering the degradation of cellulose induced by acids and ageing in strong environmental conditions, even from the standpoint of cellulose network arrangement. It is worth noting, too, that the unilateral NMR device used for the relaxation measurements may represent a powerful tool for the preservation of cellulose‐based artworks because it allows for the monitoring of the conservation status of cellulose in a completely non‐invasive manner.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here